Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275649

RESUMEN

OBJECTIVES: This study investigates the role of retinol binding protein 4 (RBP4) in an articular context. RBP4, a vitamin A transporter, is linked to various metabolic diseases. METHODS: Synovial fluid RBP4 levels were assessed in crystalline arthritis (CA) patients using ELISA. RBP4's impact on articular cell types was analysed in vitro through RT-PCR and flow cytometry. Proteomic analysis was conducted on primary human osteoarthritis chondrocytes (hOACs). RESULTS: Synovial fluid RBP4 concentrations in CA patients correlated positively with glucose levels and negatively with synovial leukocyte count and were elevated in hypertensive patients. In vitro, these RBP4 concentrations activated neutrophils, induced the expression of inflammatory factors in hOACs as well as synoviocytes, and triggered proteomic changes consistent with inflammation. Moreover, they increased catabolism and decreased anabolism, mitochondrial dysfunction, and glycolysis promotion. Both in silico and in vitro experiments suggested that RBP4 acts through TLR4. CONCLUSIONS: This study identifies relevant RBP4 concentrations in CA patients' synovial fluids, linking them to hypertensive patients with a metabolic disruption. Evidence is provided that RBP4 acts as a DAMP at these concentrations, inducing robust inflammatory, catabolic, chemotactic, and metabolic responses in chondrocytes, synoviocytes, and neutrophils. These effects may explain RBP4-related metabolic diseases' contribution to joint destruction in various rheumatic conditions like CA.

2.
Nutrients ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447284

RESUMEN

Beer consumption has been identified as a risk factor for osteoarthritis (OA), a rheumatic disease characterised by cartilage degradation, joint inflammation, and eventual joint failure. One of the main isoflavonoids in beer is formononetin (FNT), an estrogenic compound also found in multiple plants and herbs. In this study, we aimed to investigate the effect of FNT on chondrocyte viability, inflammation, and metabolism. Cells were treated with FNT with or without IL-1ß for 48 h and during 7 days of differentiation. Cell viability was determined via MTT assay. Nitrite accumulation was determined by Griess reaction. The expression of genes involved in inflammation and metabolism was determined by RT-PCR. The results revealed that a low concentration of FNT had no deleterious effect on cell viability and decreased the expression of inflammation-related genes. However, our results suggest that FNT overexposure negatively impacts on chondrocytes by promoting catabolic responses. Finally, these effects were not mediated by estrogen receptors (ERs) or aryl hydrocarbon receptor (AhR). In conclusion, factors that favour FNT accumulation, such as long exposure times or metabolic disorders, can promote chondrocyte catabolism. These data may partially explain why beer consumption increases the risk of OA.


Asunto(s)
Cerveza , Condrocitos , Polifenoles , Polifenoles/farmacología , Condrocitos/efectos de los fármacos , Células Cultivadas , Inflamación , Animales , Ratones , Supervivencia Celular , Diferenciación Celular , Simulación del Acoplamiento Molecular , Receptores de Estrógenos
3.
Biol Res ; 56(1): 9, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890579

RESUMEN

BACKGROUND: Knowledge about regulating transcription factors (TFs) for osteoblastogenesis from mesenchymal stem cells (MSCs) is limited. Therefore, we investigated the relationship between genomic regions subject to DNA-methylation changes during osteoblastogenesis and the TFs known to directly interact with these regulatory regions. RESULTS: The genome-wide DNA-methylation signature of MSCs differentiated to osteoblasts and adipocytes was determined using the Illumina HumanMethylation450 BeadChip array. During adipogenesis no CpGs passed our test for significant methylation changes. Oppositely, during osteoblastogenesis we identified 2462 differently significantly methylated CpGs (adj. p < 0.05). These resided outside of CpGs islands and were significantly enriched in enhancer regions. We confirmed the correlation between DNA-methylation and gene expression. Accordingly, we developed a bioinformatic tool to analyse differentially methylated regions and the TFs interacting with them. By overlaying our osteoblastogenesis differentially methylated regions with ENCODE TF ChIP-seq data we obtained a set of candidate TFs associated to DNA-methylation changes. Among them, ZEB1 TF was highly related with DNA-methylation. Using RNA interference, we confirmed that ZEB1, and ZEB2, played a key role in adipogenesis and osteoblastogenesis processes. For clinical relevance, ZEB1 mRNA expression in human bone samples was evaluated. This expression positively correlated with weight, body mass index, and PPARγ expression. CONCLUSIONS: In this work we describe an osteoblastogenesis-associated DNA-methylation profile and, using these data, validate a novel computational tool to identify key TFs associated to age-related disease processes. By means of this tool we identified and confirmed ZEB TFs as mediators involved in the MSCs differentiation to osteoblasts and adipocytes, and obesity-related bone adiposity.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Osteogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Metilación de ADN , Diferenciación Celular/genética
4.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835608

RESUMEN

It is well known that patients with attention deficit hyperactivity disorder treated with stimulants, such as methylphenidate hydrochloride (MPH), have reduced height and weight. Even though MPH has an anorexigenic effect, an additional impact of this drug on the growth plate cannot be discarded. In this study, we aimed to determine the cellular effect of MPH on an in vitro growth plate model. We tested the effects of MPH on the viability and proliferation of a prechondrogenic cell line via an MTT assay. In vitro differentiation of this cell line was performed, and cell differentiation was evaluated through the expression of cartilage- and bone-related genes as measured via RT-PCR. MPH did not alter the viability or proliferation of prechondrogenic cells. However, it reduced the expression of cartilage extracellular matrix-related genes (type II collagen and aggrecan) and increased the expression of genes involved in growth plate calcification (Runx2, type I collagen, and osteocalcin) at different phases of their differentiation process. Our results evidence that MPH upregulates genes associated with growth plate hypertrophic differentiation. This may induce premature closure of the growth plate, which would contribute to the growth retardation that has been described to be induced by this drug.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Placa de Crecimiento , Metilfenidato , Osteogénesis , Humanos , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Estimulantes del Sistema Nervioso Central/efectos adversos , Placa de Crecimiento/efectos de los fármacos , Metilfenidato/efectos adversos , Osteogénesis/efectos de los fármacos , Células Cultivadas
5.
Antioxidants (Basel) ; 12(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36829930

RESUMEN

Osteoarthritis (OA) is hallmarked as a silent progressive rheumatic disease of the whole joint. The accumulation of inflammatory and catabolic factors such as IL6, TNFα, and COX2 drives the OA pathophysiology into cartilage degradation, synovia inflammation, and bone destruction. There is no clinical available OA treatment. Although traditional ayurvedic medicine has been using Boswellia serrata extracts (BSE) as an antirheumatic treatment for a millennium, none of the BSE components have been clinically approved. Recently, ß boswellic acid (BBA) has been shown to reduce in vivo OA-cartilage loss through an unknown mechanism. We used computational pharmacology, proteomics, transcriptomics, and metabolomics to present solid evidence of BBA therapeutic properties in mouse and primary human OA joint cells. Specifically, BBA binds to the innate immune receptor Toll-like Receptor 4 (TLR4) complex and inhibits both TLR4 and Interleukin 1 Receptor (IL1R) signaling in OA chondrocytes, osteoblasts, and synoviocytes. Moreover, BBA inhibition of TLR4/IL1R downregulated reactive oxygen species (ROS) synthesis and MAPK p38/NFκB, NLRP3, IFNαß, TNF, and ECM-related pathways. Altogether, we present a solid bulk of evidence that BBA blocks OA innate immune responses and could be transferred into the clinic as an alimentary supplement or as a therapeutic tool after clinical trial evaluations.

6.
Biol. Res ; 56: 9-9, 2023. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1429910

RESUMEN

BACKGROUND: Knowledge about regulating transcription factors (TFs) for osteoblastogenesis from mesenchymal stem cells (MSCs) is limited. Therefore, we investigated the relationship between genomic regions subject to DNA-methylation changes during osteoblastogenesis and the TFs known to directly interact with these regulatory regions. RESULTS: The genome-wide DNA-methylation signature of MSCs differentiated to osteoblasts and adipocytes was determined using the Illumina HumanMethylation450 BeadChip array. During adipogenesis no CpGs passed our test for significant methylation changes. Oppositely, during osteoblastogenesis we identified 2462 differently significantly methylated CpGs (adj. p < 0.05). These resided outside of CpGs islands and were significantly enriched in enhancer regions. We confirmed the correlation between DNA-methylation and gene expression. Accordingly, we developed a bioinformatic tool to analyse differentially methylated regions and the TFs interacting with them. By overlaying our osteoblastogenesis differentially methylated regions with ENCODE TF ChIP-seq data we obtained a set of candidate TFs associated to DNA-methylation changes. Among them, ZEB1 TF was highly related with DNA-methylation. Using RNA interference, we confirmed that ZEB1, and ZEB2, played a key role in adipogenesis and osteoblastogenesis processes. For clinical relevance, ZEB1 mRNA expression in human bone samples was evaluated. This expression positively correlated with weight, body mass index, and PPARγ expression. CONCLUSIONS: In this work we describe an osteoblastogenesis-associated DNA-methylation profile and, using these data, validate a novel computational tool to identify key TFs associated to age-related disease processes. By means of this tool we identified and confirmed ZEB TFs as mediators involved in the MSCs differentiation to osteoblasts and adipocytes, and obesity-related bone adiposity.


Asunto(s)
Humanos , Osteogénesis/genética , Células Madre Mesenquimatosas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Metilación de ADN
7.
Biomed Pharmacother ; 155: 113671, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36108390

RESUMEN

Osteoarthritis (OA) affects more than 300 million people worldwide and it is about to become the first disabling disease. OA is characterized by the progressive degradation of the articular cartilage but is a disease of the whole joint. Articular innate immune responses (IIR) associated with tissue degradation contribute to its progression. However, no treatment is available to block these IIRs. Through data text mining and computational pharmacology, we identified two clinical available drugs, naloxone, and thalidomide, with potential inhibitory properties on toll-like receptor 4 (TLR4), a major activator of these IIR. Proteome analysis confirmed that activation of this receptor or the IL1 receptor generated OA-like and gout-like proteomic changes in human primary chondrocytes. Both compounds were found to block TLR4 complex and inhibit TLR4 and IL1R-mediated IIR in OA chondrocytes, osteoblasts, and synoviocytes. Furthermore, naloxone and thalidomide inhibitory effects involved the downregulation of the NLRP3 inflammasome pathway, which is downstream of TLR4/IL1R signaling. We demonstrated that these compounds, within a therapeutic range of concentrations, exhibited anti-inflammatory and anti-catabolic properties in joint primary OA cells without any toxic effect. This data underpins naloxone & thalidomide repurpose to treat OA-associated inflammatory responses.


Asunto(s)
Osteoartritis , Receptor Toll-Like 4 , Humanos , Condrocitos/metabolismo , Reposicionamiento de Medicamentos , Inmunidad Innata , Inflamasomas/metabolismo , Naloxona/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoartritis/metabolismo , Proteoma/metabolismo , Proteómica , Receptores de Interleucina-1/metabolismo , Talidomida/farmacología , Receptor Toll-Like 4/metabolismo , Interleucina-1/metabolismo
8.
Br J Pharmacol ; 179(2): 270-286, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643941

RESUMEN

BACKGROUND AND PURPOSE: Osteoarthritis, a major cause of disability in developed countries does not have effective treatment. Activation of TLR4 and innate immune response factors contribute to osteoarthritis progressive cartilage degradation. There are no clinically available TLR4 inhibitors. Interestingly, the antidepressant amitriptyline could block this receptor. Thus, we evaluated amitriptyline anti-TLR4 effects on human osteoarthritis chondrocytes in order to repurpose it as an inhibitor of innate immune response in joint inflammatory pathologies. EXPERIMENTAL APPROACH: Using in silico docking analysis, RT-PCR, siRNA, elisa, proteomics and clinical data mining of drug consumption, we explored the clinical relevance of amitriptyline blockade of TLR4-mediated innate immune responses in human osteoarthritis chondrocytes. KEY RESULTS: Amitriptyline bound TLR4 but not IL-1 receptor. Interestingly, amitriptyline binding to TLR4 inhibited TLR4- and IL-1 receptor-mediated innate immune responses in human osteoarthritis chondrocytes, synoviocytes and osteoblasts cells. Amitriptyline reduced basal innate immune responses and promoted anabolic effects in human osteoarthritis chondrocytes. Supporting its anti-innate immune response effects, amitriptyline down-regulated basal and induced expression of NLRP3, an inflammasome member from IL-1 receptor signalling linked to osteoarthritis and gout pathologies. Accordingly, mining of dissociated and aggregated drug consumption data from 107,172 elderly patients (>65 years) revealed that amitriptyline consumption was significantly associated with lower colchicine consumption associated with inflammatory gout flare treatment. CONCLUSION AND IMPLICATIONS: Amitriptyline blocks TLR4-, IL-1 receptor and NLRP3-dependent innate immune responses. This together with clinical data amitriptyline could be repurposed for systemic or local innate immune response management in diverse joint inflammatory pathologies.


Asunto(s)
Gota , Osteoartritis , Anciano , Amitriptilina/efectos adversos , Condrocitos/metabolismo , Gota/metabolismo , Gota/patología , Humanos , Inmunidad Innata , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoartritis/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/uso terapéutico , Brote de los Síntomas , Receptor Toll-Like 4/metabolismo
9.
Biomedicines ; 11(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36672539

RESUMEN

Adipogenesis-osteoblastogenesis balance-rupture is relevant in multiple diseases. Current human mesenchymal stem cells (hMSCs) in vitro differentiation models are expensive, and are hardly reproducible. Their scarcity and variability make an affordable and reliable method to study adipocyte-osteoblast-equilibrium difficult. Moreover, media composition has been inconstant throughout the literature. Our aims were to compare improved differentiation lab-made media with consensus/commercial media, and to identify a cell-line to simultaneously evaluate both MSCs differentiations. Lab-made media were compared with consensus and commercial media in C3H10T1/2 and hMSC, respectively. Lab-made media were tested on aged women primary pre-osteoblast-like cells. To determine the optimum cell line, C3H10T1/2 and hMSC-TERT cells were differentiated to both cell fates. Differentiation processes were evaluated by adipocytic and osteoblastic gene-markers expression and staining. Lab-made media significantly increased consensus medium induction and overcame commercial media in hMSCs differentiation to adipocytes and osteoblasts. Pre-osteoblast-like cells only properly differentiate to adipocyte. Lab-made media promoted adipocyte gene-markers expression in C3H10T1/2 and hMSC-TERT, and osteoblast gene-markers in C3H10T1/2. Oil Red O and Alizarin Red staining supported these findings. Optimized lab-made media were better at differentiating MSCs compared to consensus/commercial media, and evidenced the adipogenic commitment of pre-osteoblast-like cells from aged-women. C3H10T1/2 is an optimum MSC line by which to study adipocyte-osteoblast differentiation balance.

10.
J Clin Med ; 9(4)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325753

RESUMEN

Osteoarthritis (OA), the most common chronic rheumatic disease, is mainly characterized by a progressive degradation of the hyaline articular cartilage, which is essential for correct joint function, lubrication, and resistance. Articular cartilage disturbances lead to joint failure, pain, and disability. Hyaline cartilage is also present in the growth plate and plays a key role in longitudinal bone growth. Alterations of this cartilage by diverse pathologies have been related to longitudinal bone growth inhibition (LBGI), which leads to growth retardation. Diet can play a crucial role in processes involved in the OA and LBGI's onset and evolution. Specifically, there is ample evidence pointing to the negative impacts of caffeine consumption on hyaline cartilage. However, its effects on these tissues have not been reviewed. Accordingly, in this review, we summarize all current knowledge in the PubMed database about caffeine catabolic effects on articular and growth plate cartilage. Specifically, we focus on the correlation between OA and LBGI with caffeine prenatal or direct exposure. Overall, there is ample evidence indicating that caffeine intake negatively affects the physiology of both articular and growth plate cartilage, increasing consumers predisposition to suffer OA and LBGI. As a result, caffeine consumption should be avoided for these pathologies.

11.
J Clin Med ; 8(8)2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31394795

RESUMEN

Musculoskeletal pathologies (MSPs) such as osteoarthritis (OA) and osteoporosis (OP), are a set of disorders that cause severe pain, motion difficulties, and even permanent disability. In developed countries, the current incidence of MSPs reaches about one in four adults and keeps escalating as a consequence of aging and sedentarism. Interestingly, OA and OP have been closely related to similar risk factors, including aging, metabolic alterations, and inflammation. Visfatin, an adipokine with an inflammatory and catabolic profile, has been associated with several OA and OP metabolic risk factors, such as obesity, insulin resistance, and type II diabetes. Furthermore, visfatin has been associated with the innate immune receptor toll-like receptor 4 (TLR4), which plays a key role in cartilage and bone inflammatory and catabolic responses. Moreover, visfatin has been related to several OA and OP pathologic features. The aim of this work is to bring together basic and clinical data regarding the common role of visfatin in these pathologies and their major shared risk factors. Finally, we discuss the pitfalls of visfatin as a potential biomarker and therapeutic target in both pathologies.

12.
Expert Opin Ther Targets ; 23(7): 607-618, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31074669

RESUMEN

Introduction: The rising prevalence of musculoskeletal pathologies in developed countries has caused a dramatic impact on social welfare. Amidst these musculoskeletal pathologies is Rheumatoid arthritis (RA), a chronic systemic autoimmune disease that mostly affects the synovium. RA metabolic-associated alterations, including distorted adipokine production, enhance RA inflammatory environment. Among the altered adipokines, visfatin is particularly involved in RA inflammation and catabolism and stands out as an essential enzyme linked to critical cell features. Areas covered: We discuss the potential mechanism supporting the contribution of visfatin to RA and the association between RA and obesity. We discuss the repurposing of cancer-tested drugs to inhibit visfatin in the context of RA. Additionally, we address the possibility of combining these drugs with current RA therapy. Finally, we explore the future of visfatin as an RA biomarker or therapeutic target. Expert opinion: Inhibition of visfatin has become an interesting therapeutic approach for RA pathology. Such a feat has already been attained in oncology using small molecule inhibitors, which suggest that a similar course of action would be worth pursuing in the RA context. Visfatin will become an important biomarker and therapeutic target for RA.


Asunto(s)
Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Citocinas/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Animales , Artritis Reumatoide/fisiopatología , Biomarcadores/metabolismo , Citocinas/metabolismo , Humanos , Nicotinamida Fosforribosiltransferasa/metabolismo
13.
Front Physiol ; 9: 504, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867550

RESUMEN

Inflammation is a process whose main function is to fight against invading pathogens or foreign agents. Nonetheless, it is widely accepted that inflammation takes part in multiple processes in a physiological or pathophysiological context. Among these processes the inflammation has been closely related to bone metabolism. It is well-known that in systemic inflammatory diseases such as rheumatoid arthritis the inflammatory environment contributes to the reduction of the bone mineral density. This has been further evidenced in different animals models of osteoporosis where the deletion of key inflammatory molecules dramatically reduced the bone loss. On the contrary, it is also well-known that certain degree of inflammation is required to allow bone fractures healing. In fact, excessive use of anti-inflammatory drugs inhibits bone fracture consolidation. The innate immune responses (IIRs) contribute to the development and maintenance of the inflammation. These responses have been observed in cells of the musculoskeletal system. Chondrocytes and osteoblasts are equipped with the molecular repertoire necessary to setting up these IIR, including the expression of several toll-like receptors. Specifically, toll-like receptor 4 (TLR4) activation in mesenchymal stem cells, osteoblasts, and osteocytes has been involved in catabolic and anabolic process. Accordingly, in this review we have summarized the current knowledge about the physiology of TLR4, including its signaling, and its endogenous agonists. In addition we have focused on its role on osteoblast metabolism and function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...